Large-Scale Multiclass Transduction
نویسندگان
چکیده
We present a method for performing transductive inference on very large datasets. Our algorithm is based on multiclass Gaussian processes and is effective whenever the multiplication of the kernel matrix or its inverse with a vector can be computed sufficiently fast. This holds, for instance, for certain graph and string kernels. Transduction is achieved by variational inference over the unlabeled data subject to a balancing constraint.
منابع مشابه
A New AdaBoost Algorithm for Large Scale Classification And Its Application to Chinese Handwritten Character Recognition
The present multiclass boosting algorithms are hard to deal with Chinese handwritten character recognition for the large amount of classes. Most of them are based on schemes of converting multiclass classification to multiple binary classifications and have high training complexity. The proposed multiclass boosting algorithm adopts the descriptive model based multiclass classifiers (Modified Qu...
متن کاملLarge Scale Distributed Multiclass Logistic Regression
Multiclass logistic regression (MLR) is a fundamental machine learning model to do multiclass classification. However, it is very challenging to perform MLR on large scale data where the feature dimension is high, the number of classes is large and the number of data samples is numerous. In this paper, we build a distributed framework to support large scale multiclass logistic regression. Using...
متن کاملFast Label Embeddings via Randomized Linear Algebra
Many modern multiclass and multilabel problems are characterized by increasingly large output spaces. For these problems, label embeddings have been shown to be a useful primitive that can improve computational and statistical efficiency. In this work we utilize a correspondence between rank constrained estimation and low dimensional label embeddings that uncovers a fast label embedding algorit...
متن کاملA comparison of methods for multiclass support vector machines
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computation...
متن کاملEfficient Multiclass Boosting Classification with Active Learning
We propose a novel multiclass classification algorithm Gentle Adaptive Multiclass Boosting Learning (GAMBLE). The algorithm naturally extends the two class Gentle AdaBoost algorithm to multiclass classification by using the multiclass exponential loss and the multiclass response encoding scheme. Unlike other multiclass algorithms which reduce the K-class classification task to K binary classifi...
متن کامل